Best Practices for Addressing the Broken State of Backup

Dave Russell

This research details the challenges associated with the current state of backup and recovery, and presents the top best practices for improving the backup process.

Key Findings

- Backup issues such as cost (acquisition, but especially maintenance), product capabilities and management complexity are among the top pain points organizations complain about.
- Just as there is tiered storage that provides a variety of cost and capabilities for primary and secondary storage capacity, the concept of "tiered recovery," which provides differentiated levels of backup/recovery services according to business value, is gaining traction.
- The concept of "unified recovery management" is evolving, whereby numerous backup techniques, and potentially backup solutions, are centrally managed from one console.

Recommendations

- Develop an updated and comprehensive backup/recovery plan for all the organization's current data, and build in assumptions on data growth and architecture changes that are anticipated in the next three years.
- Look to deploy, or more fully deploy, recent proven enhancements in available backup products, such as incremental forever, synthetic or virtual full processing, deduplication, server virtualization improvements, and snapshot and replication integration.
- Build the concept of tiered recovery into your availability strategy, establishing multilayered SLAs that appropriately match recover techniques to business requirements.
- Implement a unified recovery management solution where ideally all, but at least many, of the backup techniques and approaches are managed from a common and centralized point.
- **Do not use the backup system for long-term data storage or archiving; instead, implement separate archive systems for long-term data retention.**
• Perform data recovery testing at least once a year on a subset of your data to ensure that your backup strategy can effectively meet the stated protection SLAs.
TABLE OF CONTENTS

Strategic Planning Assumption(s) .. 4
Analysis .. 4
1.0 Introduction .. 4
2.0 The Broken State of Backup .. 4
 2.1 Amount of Data ... 4
 2.2 More-Stringent SLAs .. 5
 2.3 Antiquated Backup Model .. 5
 2.4 Top Backup/Restore Frustrations .. 6
 2.4.1 Cost .. 6
 2.4.2 Capability ... 7
 2.4.3 Complexity .. 7
3.0 Best Practices for Improving Backup ... 8
 3.1 Fully Explore Current Capabilities ... 8
 3.2 Implement Archiving ... 10
 3.3 Consider New Backup Pricing Models .. 10
 3.3.1 Backup Cost History ... 10
 3.3.2 Backup Costs Today ... 11
 3.3.3 Maintenance Becomes a Factor ... 11
 3.3.4 Vendors Change Licensing Terms and Models .. 11
 3.4 Implement Data Reduction ... 12
 3.5 Implement Tiered Recovery ... 13
 3.6 Implement Unified Recovery Management .. 15
 3.7 Perform Regular Restore Testing .. 16

Recommended Reading ... 16

LIST OF FIGURES

Figure 1. Tiered Recovery Example .. 14
Figure 2. Unified Recovery Management ... 16
STRATEGIC PLANNING ASSUMPTION(S)

By 2013, at least 20% of organizations will have changed their primary backup vendor due to frustration over cost, complexity and/or capability, up from the typical single-digit percentage shifts today.

By 2013, more than 50% of midsize organizations and more than 75% of large enterprises will implement tiered recovery architectures.

ANALYSIS

1.0 Introduction

Backup and recovery is one of the oldest and most frequently performed operations in the data center. The need for recovery solutions dates to the advent of computers themselves, and backup has been an established market for many decades. Gartner end-user inquiry call volume regarding backup continues to be high every year, and has been rising at about 20% each year for the past three years. Organizations worldwide are seeking ways to easily, quickly and cost-effectively ensure that their data is appropriately protected.

Despite the long timeline associated with backup, the practice has seen a number of changes and challenges in recent years. Although new backup techniques and technologies have come into the market, many organizations are still struggling to partially embrace, much less fully deploy, newer backup capabilities. At the same time, a common discussion with organizations regarding backup often centers on the need for improved solutions that will not only incrementally improve the overall state of backup, but dramatically improve it. Organizations are voicing the opinion that backup needs to improve a lot, not just a little. This is leading to an increased willingness to switch backup vendors. The implication with the rising frustration with backup is that data protection approaches of the past may no longer suffice in meeting current, much less future, recovery requirements.

2.0 The Broken State of Backup

For many organizations, backup has become an increasingly daunting and brittle task fraught with significant challenges. In this section, we present a closer inspection of the greatest contributing factors to frustration in the backup/recovery process.

2.1 Amount of Data

The industry has talked about the challenges associated with the proliferation of data for years. While it is generally accepted that the amount of data is growing fast for most organizations, a closer look at data growth reveals why this is a major issue for backup.

Structured data, such as databases, and even semistructured data, like e-mail, usually have an administrator charged with managing the data and the applications that go with it. Growth is an issue in this case, but even more challenging is the typically faster growth rate for unstructured data, such as office productivity files (e.g., word processing, spreadsheets and presentations), which do not have a central administrator. The lack of a central owner and administrator, coupled with the high rate of redundancy and accidental corruption and deletion of unstructured data, make appropriately protecting these files even more challenging.

Data growth is not only about the number of objects (files, data base, e-mail, SharePoint, virtual machines [VMs], etc.) increasing. The size of each of these objects is also on the rise, as e-mail becomes an unintended content repository, databases now house embedded files, and
spreadsheets and word processing documents contain rich media files. Additionally, some organizations would like to keep multiple versions of objects in order to revert to previous instances, further adding to the amount of data to back up and retain.

In total, data growth is occurring from increases in:

- The number of objects
- The size of objects
- The number of versions
- The desire to retain these objects (files, e-mail, etc.) for longer periods

Each of these adds to the amount of data to back up, especially if an archiving solution is not implemented to deal with aged files, and/or data reduction techniques (such as data deduplication) are not deployed.

2.2 More-Stringent SLAs

SLAs are increasing in most organizations and are becoming more stringent, as well as more common, in terms of an increased number of companies that have backup service levels. The desire today is for zero downtime and to recover data faster than before. For some companies, the notion of a 24-hour, or longer, restore process is no longer acceptable for any data, not even personal files.

In the last five years, a desire for improved recovery time objectives (RTOs) and recovery point objectives (RPOs) have been well-documented. RTO is how long it takes to recover from a given failure scenario, and RPO indicates how far back in time the restored data will be from. Perhaps the most accurate way to view these is that, from a business perspective, RTO indicates how long you're going to be without the data, and RPO is a measure of how much of the most recent data will be lost. Naturally, organizations are striving to make improvements in both measurements for as much of their data as possible.

As is to be expected, most lines of business and end users would like to achieve the highest level of service, which means the most stringent RTOs and RPOs. In a perfect world, the premier recovery methodology would be applied for all data. In reality, constraints such as budget, time and storage personnel translate to the need to relegate some data to a lower quality of service, resulting in longer recovery and more potential for lost data. The real issue is that the business or end user may not be fully aware of the true level of service, often believing they are better protected than they are.

The desire for better protection and availability results in a demand for improved backup capabilities.

2.3 Antiquated Backup Model

For several decades, the backup process has remained largely unchanged, using the same techniques and methodologies that were used over one-quarter of a century ago. Classically, the backup model was that once a week a full backup would be performed (often over the weekend), making copies of all data. Then, once a day (typically late in the evening, when the data would presumably not be accessed), an incremental backup process would make a copy of new and modified files, databases, etc. Some organizations were concerned about the restore process taking too long to recover a full backup and potentially having to apply several nightly incremental backups to get to the most recent data, so to avoid this a nightly full backup might have been performed on critical databases or e-mail systems.
This backup model represented a brute-force approach, where quite a bit of server processing, network transmission and storage of redundant data took place. While this may not have been a significant issue decades ago, the growth of data, proliferation of new applications and the need to access data around the clock eventually exposed the traditional backup methodology as broken. The legacy backup approach simply does not scale well, and cannot handle the increased demands of protecting more data in less time, ideally with faster recovery.

Scale issues often reported with traditional backup have two types of challenges:

- The first issue is the "very large object problem." This happens when a company has a very large database to back up. An example of this is when a large database table space, perhaps several hundred terabytes in size, must be backed up regularly, but the full backup may take over 24 hours to complete. This means a backup may not complete before the next backup is scheduled to take place. Using legacy methods of backup can take a long time, perhaps too long for some organizations to obtain a full backup.

- The second issue is the opposite concern. Instead of a smaller number of very large objects, an organization may have millions, or even billions, of relatively small files, perhaps only a few kilobytes in size. The problem is that while the amount of data is very small, and can thus be quickly backed up, the extremely large number of files takes a long time to process. This is because most backup applications need to traverse the file system, scanning for new and modified data, and then create an entry for the object in the backup repository/database. These millions of database entries can take up more space than the actual object, and can slow the backup process. The scanning process consumes significant processor cycles and a long time to complete. Gartner has heard nightmare accounts where the time required to interrogate the file system could be hours, but that the time spent backing up new and modified data could be a matter of minutes. The end result for this issue is the same as the first — the backup takes too long to complete.

A further concern with most traditional backup approaches is that backup agents for file systems, databases, e-mail, ERP systems, etc., had to be deployed on each physical machine in order to obtain a backup. The rise of server virtualization initially made this even more daunting, as even more agents needed to be installed and managed. In larger enterprises, the challenge of keeping track of and updating backup agents was made more problematic because the storage team might have trouble getting server administrators to allow them to update and maintain the backup agents, meaning that down-level backup agents had to be endured for long periods of time.

Snapshot and data deduplication techniques have recently proved useful in addressing backup scale challenges, and are increasingly being deployed as a means of improving the level of efficiency in the backup process. The penetration rate for both of these technologies, while on the rise, is estimated by Gartner to be less than 20% for large enterprises.

2.4 Top Backup/Restore Frustrations

Each year, Gartner analysts collectively handle close to 1,000 inquiries on backup, and host several conferences in multiple countries where backup issues are discussed. The following are the top three frustrations that end users have expressed over the last two years.

2.4.1 Cost

First and foremost, organizations complain about the cost of backup solutions. The upfront acquisition cost is always a concern, but the larger issue for many often is the annual maintenance fee associated with backup software. As more applications have been deployed and
more machines (physical and virtual) have been installed, the costs of backup have risen. Often coupled with this is the desire to expand backup to include more servers than in the past, to add protection to remote offices, and sometimes to provide new backup services for desktop and laptop users as well. All combined, these things can result in a larger backup bill, and a much larger annual maintenance and service cost.

2.4.2 Capability

Cost may be the most frequently cited backup frustration, but it is often aggravated by the second most common complaint, which is the capability of the backup solution. Organizations become more exasperated by the cost of their backup solution if they feel that the product is not adequately meeting their recovery needs.

From end-user inquiry, conference polling and worldwide surveys, the top five backup capability complaints in priority for backup solutions are:

- Difficulty meeting the backup window
- The need for point solutions in order to fully protect all systems or data (e.g., server-virtualization-specific tools, unique database or SharePoint protection products, and different solutions to back up laptops)
- Needing to troubleshoot and restart failed backup jobs
- Not being able to restore data fast enough to meet SLAs
- Lack of easy and/or complete reporting to know and prove data is protected

2.4.3 Complexity

Organizations also complain about the complexity of their backup solutions. The feeling is that too much time, expertise and effort is spent keeping the current recovery system(s) afloat. Organizations would like backup to be a process that requires far less supervision and administrative attention, and for higher backup and restore success rates to be easier to achieve.

Some complexity issues have been cited earlier in this research, but common specific examples include:

- Agents:
 - Having to deploy and manage code on each physical, and often each virtual, machine is problematic for large organizations.
 - In some cases, multiple agents need to be deployed on one system to protect the file system, application and network-attached storage (NAS) data.

- VMs:
 - The most common method for protecting VMs is still to put a traditional backup agent in each.
 - While advancements have recently been offered by some hypervisor vendors, a lot of confusion remains in the industry about best approaches, what new capabilities are facilitated by each hypervisor provider, and what level of hypervisor support and VM backup capabilities are supported by a specific backup vendor.

- Cascaded applications:
Applications that run on top of other applications can present additional backup concerns and complexity. An example is SAP running on top of an Oracle or SQL Server database, which could require expertise and special handling for each of these components.

Organizations complain of the lack of powerful, easy-to-use solutions for these environments.

SharePoint:

Emerging applications like SharePoint may not have a current backup plan or best practices associated with them, since they are so new.

Microsoft has offered a new version of SharePoint, which requires the use of different interfaces and best practices to properly protect it.

Further adding to the challenge is that there are many ways to implement a large SharePoint instance, whereby the many application components could be installed on many different servers.

Backup beyond the data center:

Protection for remote offices, desktops and laptops is on the rise, but brings with it new demands and concerns.

A potentially new class of less-sophisticated and geographically dispersed users with mobile devices that can more easily be lost, stolen or damaged carries unique data recovery and service organization challenges.

Many data centers view this new backup task as the tip of the iceberg, as client virtualization, or hosted virtual desktops (HVDs), bring new and expanded recovery demands.

3.0 Best Practices for Improving Backup

Gartner is often asked how organizations can improve their backup and recovery practices. Backup may not be glamorous, but it is an activity that nearly every organization is striving to optimize — typically trying to contain costs, while protecting more data and offering faster backup and restore times. In this section, best practices for improving backup are presented.

3.1 Fully Explore Current Capabilities

While backup/recovery solutions certainly have a great deal of room for improvement, it is also the case that most organizations have yet to fully embrace and deploy data protection approaches and techniques that have been available for years. Such concepts as incremental forever, synthetic backups and virtual full backups are now offered by several vendors, and are robust enough for production implementations. The expanded use of disks for backup, while a marketing slogan for some time, is now becoming the norm for the industry (see "Poll Shows Disk-Based Backup on the Rise, With a Few Surprises"). Client- and target-side data deduplication solutions are offered by many providers. In fact, some vendors offer multiple kinds of deduplication, and are on second- and third-generation solutions. The ability to do image-based snapshots with individual, file-level cataloging and restoration has been possible for quite some time as well. Many vendors have delivered significant improvement in server virtualization and SharePoint recovery in their most recent product releases.
Many vendors have been busy developing code internally, and a number of acquisitions in the last four years have led to expanded features. While acquisitions bring the potential for new capabilities, they can add to integration and poor ease-of-use side effects. Nonetheless, one company acquiring another is a strong signal of the future direction of the acquirer's strategy, and an indication of where the industry sees the market headed, and is useful in understanding what functions are becoming important.

A partial list of major backup and recovery acquisitions since 2006 includes:

- Atempo
 - Storactive for continuous data protection (CDP) and laptop backup (2006)
- BakBone Software
 - Asempra for CDP and replication (2009)
 - Alvari for deduplication (2008)
 - Constant Data for CDP and replication (2005)
- CA Technologies
 - XOsoft for CDP and replication (2006)
- EMC*
 - Data Domain for target-side deduplication (2009)
 - WysDM for backup reporting (2008)
 - Berkeley Data Systems for Mozy online backup services (2007)
 - Indigo Stone for bare-metal recovery (2007)
 - Kashya for CDP and heterogeneous replication (2006)
- IBM
 - Diligent Technologies for target-side deduplication (2007)
 - FilesX for CDP and replication (2007)
 - Arsenal Digital for online backup service (2007)
- Quest Software
 - Vizioncore for server virtualization backup (2008)
- Symantec*
 - Revivio for CDP and heterogeneous replication (2006)

*While further back in time, it is worth noting two additional major backup/recovery acquisitions: Veritas by Symantec in 2005 and Legato Systems by EMC in 2003.
New capabilities take time, often three to five years or more, to gain widespread adoption, as most organizations are risk-averse. However, the delay in implementation is also attributable to companies not knowing all the available options and capabilities their current backup vendor, much less all vendors in the industry, currently offers.

Action Item: Before making plans to jettison your current backup product, make sure you have been fully updated on all the features that have been delivered in the last three years to ensure that you are fully leveraging your investment.

3.2 Implement Archiving

The vast majority of the backup methodologies in production use a model whereby frequent complete full backups of all data are taken. While it is often standard procedure to configure the application for nightly incremental backups for six consecutive days and then once a week (usually on a weekend day) to take a full backup, many organizations opt for a full, nightly backup for e-mail and critical databases to minimize the amount of restore processing that needs to occur. While this approach has worked well for most companies for several decades, many now find they cannot contain all the backup activity in the available time (the backup window). While newer backup approaches can help address this, most backup applications still rely on the “full-plus” incremental concept.

In this case, removing files, e-mail and application data from primary storage can drastically reduce the overall amount of backup processing required during each full backup. Sometimes this is referred to as reducing the "working store." Organizations might ideally perform a garbage collection process, perhaps using a storage resource management (SRM) tool, but most often using data identification tools in the archive solution itself to identify candidates for archive, or to outright delete unneeded and duplicate data. Often, the storage team is concerned with deleting data, and they might not have the SRM tools at their disposal to investigate which data is not used or could be deleted. This makes implementing an archive solution that moves data to lower-cost storage devices, often by using a redirection mechanism, a very beneficial method for quickly and effectively reducing the backup window. Additional backup benefits of implementing archiving include faster restore times for a complete recovery of all backed-up data (since there is less data to bring back), as well as reducing the cost of storing and potentially transporting the backup media off-site.

An added benefit of archiving is that backup retention periods are frequently decreased, since archive is used for long-term retention, and backup is used for operational recovery. This results in a much lower exposure for e-discovery during a litigation activity, and can help contain the high cost of scanning backup tapes for required legal materials.

Action Item: Implementing an archiving procedure can be the most cost-effective way to improve backup and restore time, and a means of reducing primary and backup storage costs.

3.3 Consider New Backup Pricing Models

3.3.1 Backup Cost History

Backup products have traditionally been priced on a per-server basis, often with many add-on costs for features and line items, with some newer features commanding a premium price. Over time, most vendors have collapsed the number of charged items into their base product, or added features into an expanded/extended/enterprise offering of the product. This practice has been going on for over 20 years. An older example of this is how the number of tape library slots used to be charged in groups, requiring organizations to license several groups or tiers of tape library slots in order to deploy a large tape solution. Eventually, most backup vendors gave way to dropping all unique pricing for tape libraries and the number of slots in the library. Over time,
charging for software compression, encryption, basic disk support, base reporting, etc., has typically been folded into the product.

Action Item: While there can be a risk in upgrading to new backup software versions, if you are under a maintenance agreement, find out whether you are entitled to free upgrades, and consider newer versions when the new release bundles previously charged-for features.

3.3.2 Backup Costs Today

In addition to capabilities being completely bundled into a product, the premium that is charged for features often decreases over time. With this in mind, we should expect current deduplication up-charges to decline, perhaps as a result of competitive pressures from vendors like CA Technologies (ARCserve) and IBM (Tivoli Storage Manager [TSM]), which offer software-based deduplication at no additional charge, causing competitors to waive their additional licensing fees.

While feature collapse and new feature price erosion can sometimes help lower costs, the top complaint about backup solutions is still cost: initial product acquisition costs and ongoing maintenance fees in particular. For larger enterprises, the maintenance costs of the typical three-year backup software purchase agreement are the greatest concern, since they represent a future spending commitment.

Cost concerns are even driving some organizations to consider cloud backup services, which promise a lower total cost of ownership (TCO) for backup.

Action Item: When negotiating with vendors, first understand which features are additionally charged for and what capabilities are included at no additional expense in all products that are on your shortlist, to ensure an accurate TCO and for use in pricing negotiations.

3.3.3 Maintenance Becomes a Factor

Some vendors have been able to prop up their overall revenue partly due to a large installed base from which they continue to derive substantial maintenance revenue. However, Symantec in 2007 and 2009, and IBM in 2009, have received significant end-user backlash regarding perceived increases in the overall cost and method by which maintenance is calculated. This has driven some companies to consider alternative solutions, and has become an attack point by competing vendors. In some cases, swap-out programs are in place whereby competitive solutions are brought in only on the cost of maintenance for the products they are replacing.

Action Item: If you are considering switching backup applications, note that some vendors sometimes will agree to only charging for the maintenance of the new application, waiving the initial acquisition cost.

3.3.4 Vendors Change Licensing Terms and Models

By 2009, most backup vendors introduced pricing updates to reduce the cost of their software in a virtual server environment. Prior to this, many vendors charged the same amount, typically for a much smaller VM as for a physical server.

The most drastic recent pricing change was the introduction of capacity-based licensing. Whereas traditional pricing was based on the number of servers (along with specific server attributes, such as the number of processors or types of OSs), capacity-based pricing usually charges independently of the type of data and its origin, and is calculated on places a cost per unit of storage (usually per terabyte for enterprise solutions) basis. CA Technologies introduced this in 2009, IBM and Symantec in 1H10, and CommVault is making this available worldwide in 2H10. The vendors can differ as to where the capacity is measured — on the "front end" for the
data being backed up, or the "back end," measuring the amount of data that the backup solution generates.

Action Items: If server virtualization is deployed, make sure your organization gets the benefit of recent pricing changes, like partial server or partial CPU charges. When evaluating new backup solutions or investigating extending a maintenance agreement with your backup vendor, ask the vendor if there are new pricing and packaging plans that are available, such as capacity-based licensing, newer product versions with a collapsed parts list that include additional features in the base product, and bundles that combine many features and/or products at a lower overall cost.

3.4 Implement Data Reduction

Deduplication has become "table stakes" for vendors in the backup/recovery market. The value of data reduction technologies, such as deduplication, cannot be understated. Deduplication materially changes the economics of disk-based backup and recovery approaches by reducing data, resulting in significantly lower disk requirements and cost.

In May 2007, Gartner said that deduplication was a transformational technology with the potential for significant cost savings and expanded quality of service capabilities (see "Data Deduplication Is Poised to Transform Backup and Recovery"). We reiterate this assessment, and frequently advise clients to investigate deduplication technologies for use in addressing current and anticipated storage challenges. Gartner believes that data reduction, such as compression and deduplication, is a "must have" capability for backup solutions.

The benefits of deduplication are in resource savings. Potential savings can occur on many levels. The primary benefit is in substantially decreasing the amount of disk space required to store a given amount of data. Vendor claims range from capacity savings of 20:1 to 400:1. Gartner clients with deduplication technology in production report data reductions ranging from 8:1 to almost 300:1. Actual ratios vary depending on the amount of data redundancy, the data change rate and the backup methodology (for example, full, full plus incremental, full plus differential or incremental forever). The more often full backups are made, the higher the deduplication ratio.

Depending on the deduplication implementation, there can be bandwidth savings in the amount of data transferred over the network. Other favorable side effects of deduplication include decreased power, cooling and the physical size for storage devices as a result of using less physical capacity and reductions in acquisition costs.

Another key advantage of deduplication is the ability to improve SLAs for recovery. Backup to disk can improve backup windows and enable production resources to return to normal operations faster, minimizing the impact of backup on production activities. However, some organizations have not incorporated disks into their backup environments, and many companies have only deployed a small amount of disks if they are using a disk-based approach. Those that have deployed disks often use it as a staging area or cache, which is soon cleared by transferring data to tape to make way for newer backups.

Deduplication can significantly change the economics of the amount of disk space needed for storing a given period of backup data, enabling users to move from days/weeks to weeks/months of online retention and, in some cases, a tapeless environment. As a result, deduplication can also positively impact restore times, because the longer the ability to house data on disk, the greater the likelihood that a restore request can be satisfied from a disk copy versus a slower access medium, such as tape or optical. There has been concern about the data reinflation process (also referred to as "rehydration") adding restore time, but as processing power increases, the deduplication solutions become faster, and comparing current deduplication implementation to typical legacy tape solutions yields a positive improvement in restore time.
Deduplication could enable organizations of all sizes to consider or expand their use of disks as a backup target. With improved disk-based backup comes the ability to restore from disks, improving recovery times.

Deduplication has generated an increasing number of end-user inquiries since 2006. Gartner conference session polling, kiosk polling at conferences and global surveys continue to show an increase each year in interest in and deployment of deduplication. (These recent results support an earlier Strategic Planning Assumption in "Predicts 2008: Emerging Technologies Make Storage Hardware and Software More Effective," which states that, by 2012, deduplication will be applied to 75% of backups.) Gartner expects increasing industry buzz and end-user interest in deduplication to continue, and to accelerate beyond 2010. The interest in data reduction technologies are well-founded, as they bring many benefits to the recovery process.

Action Items: When evaluating backup software or disk-based hardware solutions, data reduction (such as compression and data deduplication) should be considered a must-have feature, and should be an essential part of assessment criteria. Many backup vendors have released new or expanded deduplication features, so it is important to understand the latest capabilities so as not to be incorrectly swayed by a vendor positioning the competitive capabilities of other solutions.

3.5 Implement Tiered Recovery

In a perfect world, IT would have all the resources required to implement the optimal level of capability and service for all applications, users and data. Unfortunately, this is rarely the case, as constraints such as funding, storage administrator time and the availability of one product to handle all backup requirements are often issues. The need to balance the budget against resources, and to manage availability trade-offs in a business-appropriate manner, are leading to a new backup and recovery approach.

Over the last five years, Gartner worldwide surveys, conference polls and end-user inquiries clearly show that backup is slowly morphing from tape-only to more-disk-oriented activity; however, in the past two years, the industry has begun to embrace and deploy recovery enhancements. Not surprisingly, disk is increasingly being incorporated into the backup process, and in greater amounts. While, directionally, we see disk usage, data deduplication, replication for electronically vaulting off-site copies of data and snapshots for taking more-frequent copies of data all on the rise, the same tools, technologies and backup techniques from decades ago are also typically implemented. This expanded menu of options, techniques, cost structures and service levels has changed the way organizations deliver backup services.

In the past, backup was very much a "one size fits all" endeavor. Often, the only major backup decisions being made were whether something should be backed up and, if so, how long to retain it. The classical approach was a once-a-day copy of the data, often in the midnight hours, which was then written to physical tape. Fast-forward to today, where multiple technologies are often used in conjunction with one another and are merging to provide additional capabilities. New techniques lead to an expanded menu of choices, and one current or emerging recovery technology does not always win out over another. Rather, administrators will have more flexibility, including differentiated levels of cost and service, in providing recovery solutions. Just as the concept of tiered storage provides a variety of cost and performance levels for storage capacity, now tiered recovery provides differentiated levels of backup and recovery services. Unlike tiered storage, the tiered recovery model may be additive, with an organization using multiple techniques together to achieve the needed overall level of data availability and recovery characteristics, and to ensure that business risk and continuity requirements are met.

One example of the tiered recovery concept is an organization that protects its vital databases by performing nightly backups to a virtual tape library (VTL), which are deduplicated and replicated to another company location where they are written out to physical tape and vaulted. This same
company also takes snapshots throughout the day at two-hour intervals to further guard against outages, and retains the last 10 snapshots before recycling the space for newer snapshots.

To effectively implement tiered recovery, an organization should conduct a business impact assessment (BIA) to categorize the criticality of the IT services. Any recovery architecture must start by gaining an understanding of the IT services supporting business processes and their associated service levels. The reason for this is that service levels affect the capabilities, cost, architecture and complexity of the backup solution. This knowledge is typically acquired within a business continuity management (BCM) program — through a BIA. While, historically, this was only performed for disaster recovery systems, Gartner recommends performing a BIA for backup data as well, in order to contain cost and deliver the most appropriate service levels. Most organizations specify three to five tiers of criticality, with the highest tier having the most stringent service levels. Every organization is different, however. This issue is business-dependent, based on how IT services are utilized in the business processes, and on the overall impact of a disruption to IT services and the availability of data. Tier 1 data has the most stringent RPO and RTO requirements, and the cost of the backup solution is the highest (see Figure 1). Not all applications and data in a critical business process would be grouped in Tier 1; rather, only those deemed most critical or with the most downtime effect (typically around 30% of a portfolio reside in Tier 1; as costs improve, more applications and data can be moved to a higher tier for improved service).

Figure 1. Tiered Recovery Example
Action Items: Implement tiered recovery to optimize the balance between cost and recovery service levels. Conduct a BIA, and review it annually to determine the criticality of your business systems and their data. Implement tiered recovery by using the BIA results and devising three to five tier categories, and associate recovery service levels to each tier (that is, RTO, RPO, retention, off-site copies, etc.).

3.6 Implement Unified Recovery Management

New and less-expensive disk options make the use of disks for faster recovery a more viable option than backup to tape. Enterprise backup vendors have responded with better disk support (such as disk-to-disk, deduplication and replication), and virtual tape and deduplication appliances have gained traction by providing a disk-based solution that requires little change to the backup process. The use of disks for backup and recovery has opened up the market to vendors with products designed specifically to take advantage of disks. Leading backup solutions are capable of protecting data at the file, application, VM and volume levels. These offerings increasingly integrate with a handful of storage arrays and/or NAS filers to catalog snapshots. Some products even offer integration with a replication engine.

Expect traditional backup products to transform into recovery management solutions that may not necessarily own all the data capture and data transfer techniques used. This means that, in addition to traditional backup and recovery (application, file and image-based, etc.), there will be much stronger support for server-based replication, storage-array-based replication, intelligent-switch and/or network-based replication solutions. Examples include CommVault’s Simpana cataloging replication and snapshots from host- and array-based replication solutions, and Symantec NetBackup cataloging NetApp snapshots.

We will have a "manager of managers," a common and established concept in the networking and system management domains, whereby a hierarchy of federated management tools feed into each other, percolating up to an overall unified recovery manager, allowing for more-simplified implementation of several tiers and service levels that offers centralized monitoring, reporting and control (see Figure 2).

Action Item: Consider the concept of unified recovery management to be an essential component of your overall backup strategy and architecture, and evaluate incumbent and prospective vendors on their ability to robustly deliver this capability.
3.7 Perform Regular Restore Testing

Backups may be unrecoverable for many reasons. Some of the more common issues are server configuration and application deployment updates, user or operator error in the backup process, and hardware and software failures. In most organizations, backups are initially set up and then automatically run. Backup verification tends to be only a review of the backup log(s), with a quick scan for failures and error messages. This process may be acceptable for determining whether data was successfully written to the backup media, but it doesn't provide information about whether the data is recoverable, nor does it validate that the right information was backed up. Some businesses have instrumented backup reporting tools to better understand how backups trend over time, and to get more visibility into backup success and failures.

Still, actual recovery is the only way a data center can be certain that data is fully recoverable. Backup/restore testing has become a dying practice in most data centers, with the end result being that organizations could be far less resilient than they believe they are.

Action Item: Gartner recommends performing data recovery testing at least once a year on a subset of data to ensure that the backup strategy can effectively meet the stated protection SLAs. More-frequent testing of the most mission-critical data may be warranted.

RECOMMENDED READING

"Backup and Recovery Optimization and Cost Avoidance"
"Data Deduplication Will Be Even Bigger in 2010"
"Poll Shows Disk-Based Backup on the Rise, With a Few Surprises"
"Data Deduplication Is Poised to Transform Backup and Recovery"

"Competitive Landscape: Enterprise Distributed Backup/Recovery Software Growth Driven by Virtualization and Data Reduction"

"MarketScope for Enterprise Backup/Recovery Retired: New Enterprise Disk-Based Backup/Recovery Magic Quadrant in 2010"

"Best Practices for Conducting a Business Impact Analysis"

REGIONAL HEADQUARTERS

Corporate Headquarters
56 Top Gallant Road
Stamford, CT 06902-7700
U.S.A.
+1 203 964 0096

European Headquarters
Tamesis
The Glanty
Egham
Surrey, TW20 9AW
UNITED KINGDOM
+44 1784 431611

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney
New South Wales 2060
AUSTRALIA
+61 2 9459 4600

Japan Headquarters
Gartner Japan Ltd.
Aobadai Hills, 6F
7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042
JAPAN
+81 3 3481 3670

Latin America Headquarters
Gartner do Brazil
Av. das Nações Unidas, 12551
9º andar—World Trade Center
04578-903—São Paulo SP
BRAZIL
+55 11 3443 1509